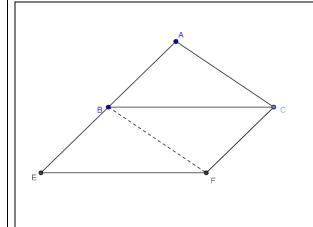
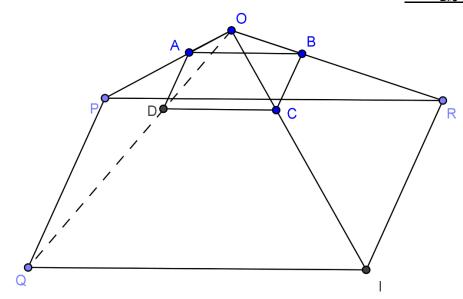

المتجهات والإزاحة


التمرين الأول

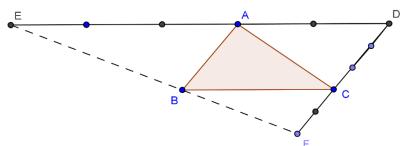
وبالتالي فإن النقط Oو Mو Cمستقيمية

$$F$$
 النبين أن النقط F و F مستقيمية $\overline{EF} = \frac{3}{2} \overrightarrow{AD}$ و $\overline{OE} = \frac{3}{2} \overrightarrow{OA}$ نعلم أن $\overrightarrow{OE} + \overrightarrow{EF} = \frac{3}{2} \overrightarrow{OA} + \frac{3}{2} \overrightarrow{AD}$ ومنه فإن $\overrightarrow{OE} + \overrightarrow{EF} = \frac{3}{2} \overrightarrow{OA} + \overrightarrow{AD}$ $= \frac{3}{2} (\overrightarrow{OA} + \overrightarrow{AD})$ $\overrightarrow{OF} = \frac{3}{2} \overrightarrow{OD}$ أي وبالتالي فإن النقط O و D و D مستقيمية


التمرين الثاني

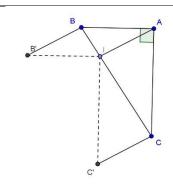
$$(t_{\overline{AB}}$$
 عصورة B بالإزاحة $\overline{BE}=\overline{AB}$ و $\overline{CF}=\overline{AB}$ صورة C بنفس الإزاحة $\overline{BE}=\overline{CF}$ إذن $\overline{BE}=\overline{CF}$ متوازي أضلاع وهذا يعني أن الرباعي $\overline{BE}=\overline{CF}$ متوازي أضلاع $\overline{BE}=\overline{CF}$ (الإزاحة تحافظ على المسافة بين نقطتين) $\overline{BC}=\overline{EF}$ فإن $\overline{BC}=\overline{Scm}$ فإن $\overline{EF}=\overline{Scm}$ فإن $\overline{EF}=\overline{Scm}$ فإن $\overline{EF}=\overline{Scm}$ مورة $\overline{EF}=\overline{Scm}$

BEF إذن صورة المثلث ABC بالإزاحة المثلث إذن صورة المثلث

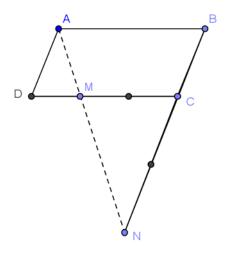

تمرين الثالث

$$\overrightarrow{OR} = 3\overrightarrow{OB}$$
 و $\overrightarrow{OP} = 3\overrightarrow{OA}$ الدينا $\overrightarrow{OP} - \overrightarrow{OR} = 3\overrightarrow{OA} - 3\overrightarrow{OB}$ الإذن $\overrightarrow{RO} + \overrightarrow{OP} = 3\overrightarrow{BO} + 3\overrightarrow{OA}$ $\overrightarrow{RP} = 3\left(\overrightarrow{BO} + \overrightarrow{OA}\right)$ $\overrightarrow{RP} = 3\overrightarrow{BA}$ الإذن \overrightarrow{RP} و \overrightarrow{ABA} مستقيمتان \overrightarrow{BA} و \overrightarrow{ABA} الإذن \overrightarrow{ABA} الإختاج ال

$$Q$$
 و Q مستقيمية $\overline{PQ} = 3\overline{AD}$ نعلم أن $\overline{PQ} = 3\overline{AD}$ بنعلم أن $\overline{PQ} = 3(\overline{AO} + \overline{OD})$ بنطبيق علاقة شال $\overline{PO} + \overline{OQ} = 3(\overline{AO} + \overline{OD})$ $\overline{PO} + \overline{OQ} = 3\overline{AO} + 3\overline{OD}$ $\overline{OQ} = 3\overline{AO} + 3\overline{OD} - \overline{PO}$ $\overline{OQ} = 3\overline{AO} + 3\overline{OD} + 3\overline{OA}$ $\overline{OQ} = 3\overline{AO} + 3\overline{OD} - 3\overline{AO}$ $\overline{OQ} = 3\overline{AO} + 3\overline{OD} - 3\overline{AO}$ ومنه فإن $\overline{OQ} = 3\overline{OD}$ وهذا يعني النقط $\overline{OQ} = 0$ ومنة يمية وهذا يعني النقط $\overline{OQ} = 0$



$$\overrightarrow{CF} = -\frac{2}{3}\overrightarrow{CD}$$
 لينا
$$\overrightarrow{CB} + \overrightarrow{BF} = -\frac{2}{3}\overrightarrow{CD}$$
 وبنطبيق علاقة شال $\overrightarrow{BF} = \overrightarrow{BC} - \frac{2}{3}\overrightarrow{BA}$
$$\overrightarrow{BF} = \overrightarrow{BC} - \frac{2}{3}\overrightarrow{BA}$$
 $\overrightarrow{BF} = \overrightarrow{BC} + \frac{2}{3}\overrightarrow{AB}$ إذن $\overrightarrow{ABF} = \overrightarrow{BC} + \frac{2}{3}\overrightarrow{AB}$ $\overrightarrow{ABF} = 2\left(-\frac{3}{2}\overrightarrow{BC} - \overrightarrow{AB}\right) + 3\left(\overrightarrow{BC} + \frac{2}{3}\overrightarrow{AB}\right)$ $= -3\overrightarrow{BC} - 2\overrightarrow{AB} + 3\overrightarrow{BC} + 2\overrightarrow{AB}$ $= \overrightarrow{O}$ $= 2\overrightarrow{BE} = -3\overrightarrow{BF}$ ومنه فإن $= -3\overrightarrow{BC} - 2\overrightarrow{AB}$ $= -3\overrightarrow{BC}$ وهذا يعني أن النقط $= -3\overrightarrow{BC} - 2\overrightarrow{AB}$ $= -3\overrightarrow{BC} - 2\overrightarrow{AB}$ $= -3\overrightarrow{ABC}$ $= -3\overrightarrow{ABC}$


$$\overrightarrow{BC}$$
 المتجهة \overrightarrow{BC} المتجهة $\overrightarrow{AD} = \overrightarrow{BC}$ بالتالي فإن $\overrightarrow{AD} = \overrightarrow{BC}$ بالتالي فإن $\overrightarrow{AD} = \overrightarrow{BC}$ وهذا يعني أن الرباعي \overrightarrow{ABCD} متوازي أضلاع $\overrightarrow{DE} = \frac{5}{2} \overrightarrow{DA}$ متوازي أضلاع $\overrightarrow{DA} = \overrightarrow{CB}$ $\overrightarrow{DB} + \overrightarrow{BE} = \frac{5}{2} \overrightarrow{CB}$ بتطبیق علاقة شال $\overrightarrow{BE} = \frac{5}{2} \overrightarrow{CB} - \overrightarrow{DB}$ $\overrightarrow{BE} = \frac{5}{2} \overrightarrow{CB} - \overrightarrow{DB}$ (علاقة شال) $\overrightarrow{BE} = \frac{5}{2} \overrightarrow{CB} - \overrightarrow{DC} - \overrightarrow{CB}$ إذن $\overrightarrow{BE} = \frac{5}{2} \overrightarrow{CB} - \overrightarrow{DC} - \overrightarrow{CB}$ $\overrightarrow{BE} = \frac{3}{2} \overrightarrow{CB} - \overrightarrow{AB}$ $\overrightarrow{BE} = \frac{3}{2} \overrightarrow{CB} - \overrightarrow{AB}$ ومنه فإن $\overrightarrow{BE} = -\frac{3}{2} \overrightarrow{BC} - \overrightarrow{AB}$ $\overrightarrow{BE} = -\frac{3}{2} \overrightarrow{BC} - \overrightarrow{AB}$

التمرين الخامس

$$(t ext{ aduptive} B)$$
 معطیات $A\vec{I} = \overrightarrow{BB'}$ رمعطیات $CC' = \overrightarrow{BB'}$ ولدینا $CC' = \overrightarrow{AB'}$ (معطیات $CC' = \overrightarrow{AI}$ وبالتالي فإن $CC' = \overrightarrow{AI}$ مورة $A\vec{I}$ وهذا یعني أن $CC' = \overrightarrow{AI}$ مورة $CC' = \overrightarrow{AI}$ بالإزاحة ذات المتجهة CC' معطیات CC' ورد CC' معطیات CC' معطیات CC' معطیات CC' وبما أن CC' فإن CC' فإن CC' فإن CC' وبما أن CC' فإن CC' فإن CC' فإن CC'

التمرين السادس

$$\overrightarrow{BN}=3.\overrightarrow{BC}$$
 لدينا $\overrightarrow{BA}+\overrightarrow{AN}=3.\overrightarrow{BC}$ بتطبيق علاقة شال $\overrightarrow{AN}=3.\overrightarrow{BC}-\overrightarrow{BA}$ بتطبيق علاقة شال $\overrightarrow{AN}=3.\overrightarrow{BC}-\overrightarrow{BA}$ $\overrightarrow{AN}=3.\overrightarrow{BC}+\overrightarrow{AB}$ (خن $\overrightarrow{AN}=3.\overrightarrow{BC}+3.\overrightarrow{DM}$ باذن $\overrightarrow{AN}=3.\overrightarrow{BC}+3.\overrightarrow{DM}$ باذن $\overrightarrow{AN}=3.\overrightarrow{BC}+3.\overrightarrow{DM}$ جادن $\overrightarrow{AN}=3(\overrightarrow{BC}+\overrightarrow{DM})$

 $\overrightarrow{AN}=3.\overrightarrow{AM}$ فإن $\overrightarrow{AM}=\overrightarrow{BC}+\overrightarrow{DM}$ فإن وبما أن النقط A و M و M مستقيمية .

$$\overrightarrow{DM} = \frac{1}{3}.\overrightarrow{DC}$$
 الدينا 2 $\overrightarrow{DA} + \overrightarrow{AM} = \frac{1}{3}.\overrightarrow{DC}$ بتطبيق علاقة شال $\overrightarrow{AM} = \frac{1}{3}.\overrightarrow{DC} - \overrightarrow{DA}$
$$\overrightarrow{AM} = \frac{1}{3}.\overrightarrow{DC} - \overrightarrow{DA}$$

$$\overrightarrow{AM} = \overrightarrow{AD} + \frac{1}{3}.\overrightarrow{DC}$$
 إذن $\overrightarrow{AD} = \overrightarrow{BC}$ $\overrightarrow{AM} = \overrightarrow{BC} + \overrightarrow{DM}$ م.أضلاع)